If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=-4.9t^2+1000
We move all terms to the left:
100-(-4.9t^2+1000)=0
We get rid of parentheses
4.9t^2-1000+100=0
We add all the numbers together, and all the variables
4.9t^2-900=0
a = 4.9; b = 0; c = -900;
Δ = b2-4ac
Δ = 02-4·4.9·(-900)
Δ = 17640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17640}=\sqrt{1764*10}=\sqrt{1764}*\sqrt{10}=42\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{10}}{2*4.9}=\frac{0-42\sqrt{10}}{9.8} =-\frac{42\sqrt{10}}{9.8} =-\frac{14\sqrt{10}}{3.2666666666667} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{10}}{2*4.9}=\frac{0+42\sqrt{10}}{9.8} =\frac{42\sqrt{10}}{9.8} =\frac{14\sqrt{10}}{3.2666666666667} $
| 14/8=21/h | | 15=2x/ | | 2x−3=x−5 | | 3x+39=162 | | 20-(-2x)+(5x)=3(30) | | 4(y−5)−y=2(−5−y)4(y−5)−y=2(−5−y) | | 20-(-3x)+(5x)=3(30) | | 0.25(8m+12)=7 | | 20-(-2x)+(5x(=3(30) | | -2/5x-8=2 | | 4x-2x=2x+-4x | | -3q-8=14 | | x/0.9=1.4√ | | )6(3x+4)=10x-8 | | 4x-77=10x | | 3z+18(2+1)=60 | | 20-(-3x)+(5x(=3(30) | | -9x+8=2x+30* | | 2)-9x+8=2x+30* | | 2m-3(4m-3)=43 | | 2(x-1)+3x=3 | | 37+8p=63+7p | | -3(3m+4)=24 | | y^2+196=0 | | 3(-3x+10)=-114 | | 2x+5x-14=14 | | 32.68+x=39.5 | | 2(29)-2+x+5=90 | | 8x-5=2x-15+4x | | 6000=f/1+0.04 | | 3x3x/4=1x1/4 | | 12x-4+8-3x=49 |